Abstract
Peroxidases are present widely in microorganisms and plants, and catalyze many reactions. However, the activity of natural peroxidases is susceptible to external conditions. We prepared carbon nanoparticles (CNPs) using an environmentally friendly and simple method. These CNPs were demonstrated to possess intrinsic peroxidase-like activity. CNPs could catalyze the reaction of a peroxidase substrate, 3,3,5,5-tetramethylbenzidine (TMB), in the presence of H2O2 to produce a blue solution at 652 nm. CNPs exhibited higher peroxidase activity than that of other carbon-based nanomaterials. Moreover, CNPs retained their high peroxidase activity after being reused several times. Glutathione (GSH) can change the blue color of oxidized TMB into a colorless hue at 652 nm. Based on this fact, qualitative and quantitative approaches were employed to detect GSH using a colorimetric method. This method showed a broad detection range (2.5-50 μM) with a limit of detection of 0.26 μM. This method was shown to be accurate for GSH detection in a cell culture medium compared with that using a commercial assay kit. Our findings could facilitate application of CNPs in biomedical areas.
