Based on Transcriptome Sequencing of Cell Wall Deficient Strain, Research on Arabinosyltransferase Inhibition's Effect on the Synthesis of Cell Wall in Chlamydomonas reinhardtii

基于细胞壁缺陷菌株转录组测序研究阿拉伯糖基转移酶抑制对莱茵衣藻细胞壁合成的影响

阅读:5
作者:Wenhua Zhang, Menghui Shang, Lexin Qiu, Bin Liu, Xiaonan Zang

Abstract

To explore the key genes involved in cell wall synthesis and understand the molecular mechanism of cell wall assembly in the model alga-Chlamydomonas reinhardtii, transcriptome sequencing was used to discover the differentially expressed genes in the cell wall defective strain. In the glucose metabolism, lipid metabolism, and amino acid metabolism pathways, the gene expressions involved in the synthesis of cell wall functional components were analyzed. The results showed that in the cell wall defective strain, arabinosyltransferase gene (XEG113, RRA) related to synthesis of plant extensin and some cell wall structural protein genes (hyp, PHC19, PHC15, PHC4, PHC3) were up-regulated, 1,3-β-glucan synthase gene (Gls2) and endoglucanase gene (EG2) about synthesis and degradation of glycoskeleton were both mainly up-regulated. Then, ethambutol dihydrochloride, an arabinosyltransferase inhibitor, was found to affect the permeability of the cell wall of the normal strain, while the cell wall deficient strain was not affected. To further research the function of arabinosyltransferase, the RRA gene was inactivated by knockout in the normal cell wall algal strain. Through a combination of microscope observation and physiological index detection, it was found that the cell wall of the mutant strains showed reduced structure levels, suggesting that the structure and function of the cell wall glycoprotein were weakened. Therefore, arabinosyltransferase may affect the glycosylation modification of cell wall glycoprotein, further affecting the structure assembly of cell wall glycoprotein.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。