Transcriptomic characterization of human lateral septum neurons reveals conserved and divergent marker genes across species

人类侧隔神经元的转录组学表征揭示了跨物种的保守和发散标记基因

阅读:13
作者:Robert A Phillips 3rd, Seyun Oh, Svitlana V Bach, Yufeng Du, Ryan A Miller, Joel E Kleinman, Thomas M Hyde, Stephanie C Hicks, Stephanie C Page, Keri Martinowich

Abstract

The lateral septum (LS) is a midline, subcortical structure, which regulates social behaviors that are frequently impaired in neurodevelopmental disorders including schizophrenia and autism spectrum disorder. Mouse studies have identified neuronal populations within the LS that express a variety of molecular markers, including vasopressin receptor, oxytocin receptor, and corticotropin releasing hormone receptor, which control specific facets of social behavior. Despite its critical role in regulating social behavior and notable gene expression patterns, comprehensive molecular profiling of the human LS has not been performed. Here, we conducted single nucleus RNA-sequencing (snRNA-seq) to generate the first transcriptomic profiles of the human LS using postmortem human brain tissue samples from 3 neurotypical donors. Our analysis identified 5 transcriptionally distinct neuronal cell types within the human LS that are enriched for TRPC4, the gene encoding Trp-related protein 4. Differential expression analysis revealed a distinct LS neuronal cell type that is enriched for OPRM1, the gene encoding the μ-opioid receptor. Leveraging recently generated mouse LS snRNA-seq datasets, we conducted a cross-species analysis. Our results demonstrate that TRPC4 enrichment in the LS is highly conserved between human and mouse, while FREM2, which encodes FRAS1 related extracellular matrix protein 2, is enriched only in the human LS. Together, these results highlight transcriptional heterogeneity of the human LS, and identify robust marker genes for the human LS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。