Regulation of Bone Morphogenetic Protein Receptor Type II Expression by FMR1/Fragile X Mental Retardation Protein in Human Granulosa Cells in the Context of Poor Ovarian Response

卵巢反应不佳时 FMR1/脆性 X 智力低下蛋白对人类颗粒细胞中骨形态发生蛋白受体 II 型表达的调节

阅读:4
作者:Xuan Phuoc Nguyen, Adriana Vilkaite, Ulrike Bender, Jens E Dietrich, Katrin Hinderhofer, Thomas Strowitzki, Julia Rehnitz

Abstract

Fragile X mental retardation protein (FMRP) is a translational repressor encoded by FMR1. It targets bone morphogenetic protein receptor type II (BMPR2), which regulates granulosa cell (GC) function and follicle development. However, whether this interaction affects folliculogenesis remains unclear. Therefore, this study investigated the potential effect of FMRP-BMPR2 dysregulation in ovarian reserves and infertility. COV434 cells and patient-derived GCs were used to evaluate FMRP and BMPR2 expression. Similarly, FMR1, BMPR2, LIMK1, and SMAD expression were evaluated in GCs with normal (NOR) and poor (POR) ovarian responses. FMRP and BMPR2 were expressed in both cell types. They were co-localized to the nuclear membrane of COV434 cells and cytoplasm of primary GCs. FMR1 silencing increased the mRNA and protein levels of BMPR2. However, the mRNA levels of FMR1 and BMPR2 were significantly lower in the POR group. FMR1 and BMPR2 levels were strongly positively correlated in the NOR group but weakly correlated in the POR group. Additionally, SMAD9 expression was significantly reduced in the POR group. This study highlights the crucial role of FMR1/FMRP in the regulation of BMPR2 expression and its impact on ovarian function. These findings indicate that the disruption of FMRP-BMPR2 interactions may cause poor ovarian responses and infertility.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。