Conclusions
Glucose-sensing secretin cells located in the distal part of the small intestine may contribute to increased plasma concentrations observed after RYGB. The metabolic role of the distal S cells warrants further studies.
Methods
A specific secretin radioimmunoassay was developed, evaluated biochemically, and used to quantify plasma concentrations of secretin in 13 obese individuals before, 1 week after, and 3 months after RYGB. Distribution of secretin and its receptor was assessed by RNA sequencing, mass-spectrometry and in situ hybridization in human and rat tissues. Isolated, perfused rat intestine and pancreas were used to explore the molecular mechanism underlying glucose-induced secretin secretion and to study direct effects of secretin on glucagon, insulin, and somatostatin secretion. Secretin was administered alone or in combination with GLP-1 to non-sedated rats to evaluate effects on glucose regulation.
Results
Plasma postprandial secretin was more than doubled in humans after RYGB (P < 0.001). The distal small intestine harbored secretin expressing cells in both rats and humans. Glucose increased the secretion of secretin in a sodium-glucose cotransporter dependent manner when administered to the distal part but not into the proximal part of the rat small intestine. Secretin stimulated somatostatin secretion (fold change: 1.59, P < 0.05) from the perfused rat pancreas but affected neither insulin (P = 0.2) nor glucagon (P = 0.97) secretion. When administered to rats in vivo, insulin secretion was attenuated and glucagon secretion increased (P = 0.04), while blood glucose peak time was delayed (from 15 to 45 min) and gastric emptying time prolonged (P = 0.004). Conclusions: Glucose-sensing secretin cells located in the distal part of the small intestine may contribute to increased plasma concentrations observed after RYGB. The metabolic role of the distal S cells warrants further studies.
