Assessment of the role of sphingosine 1-phosphate and its receptors in high-density lipoprotein-induced stimulation of astroglial cell function

评估鞘氨醇 1-磷酸及其受体在高密度脂蛋白诱导的星形胶质细胞功能刺激中的作用

阅读:14
作者:Enkhzol Malchinkhuu, Koichi Sato, Takeshi Muraki, Koichi Ishikawa, Atsushi Kuwabara, Fumikazu Okajima

Abstract

It has been suggested that lipoproteins in the central nervous system are involved in the regulation of several neural functions independent of cholesterol metabolism as well as those related to lipid metabolism. We recently demonstrated that lipoproteins are carriers for sphingosine 1-phosphate (S1P). This raised the possibility that S1P mediates the neural cell functions induced by lipoproteins. In the current study, we examined the effects of plasma high-density lipoprotein (HDL) on astroglial cell functions, focusing especially on the role of the lipoprotein-associated S1P. In rat type I astrocytes or C6 glioma cells, similar to S1P, HDL stimulated DNA synthesis and mRNA expression of fibroblast growth factor-2, a potent neurotrophic factor, which was associated with the activation of extracellular signal-regulated kinase (ERK) in a pertussis toxin-sensitive manner. The data from fractionation studies of HDL indicated that S1P may be a major component for the activation of ERK. In C6 glioma cells, HDL also induced phospholipase C-dependent intracellular Ca(2+) mobilization. Desensitization of the C6 glioma cells with S1P abolished these HDL-induced actions. Furthermore, overexpression of S1P receptors in C6 glioma cells led to a significant enhancement of HDL-induced ERK activation and Ca(2+) mobilization. Thus, at least some HDL-induced actions may be mediated by cell-surface S1P receptors in astroglial cells. These results imply that S1P might partially mediate lipoprotein-induced cholesterol metabolism-independent neural cell functions in the central nervous system.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。