Sinomenine Hydrochloride Inhibits Human Glioblastoma Cell Growth through Reactive Oxygen Species Generation and Autophagy-Lysosome Pathway Activation: An In Vitro and In Vivo Study

盐酸青藤碱通过活性氧生成和自噬-溶酶体途径激活抑制人胶质母细胞瘤细胞生长:体外和体内研究

阅读:4
作者:Yumao Jiang, Yue Jiao, Zhiguo Wang, Tao Li, Yang Liu, Yujuan Li, Xiaoliang Zhao, Danqiao Wang

Abstract

Glioblastoma is the most common malignant primary brain tumor, and it is one of the causes of cancer fatality in both adult and pediatric populations. Patients with glioblastoma require chemotherapy after surgical resection and radiotherapy. Therefore, chemotherapy constitutes a viable approach for the eradication of glioblastoma cells. In this study, the anti-tumor activity of sinomenine hydrochloride (SH) was evaluated in U87 and SF767 cells in vitro and in vivo. The results showed that SH potently inhibited U87 and SF767 cell viability and did not cause caspase-dependent cell death, as demonstrated by the absence of significant early apoptosis and caspase-3 cleavage. Instead, SH activated an autophagy-mediated cell death pathway, as indicated by the accumulated microtubule-associated protein light chain 3B (LC3B)-II, triggered autophagic flux and enhanced cell viability after pretreatment with autophagy inhibitors. SH-mediated autophagy in the two cell lines was implicated in reactive oxygen species (ROS) generation, protein kinase B (Akt)-mammalian target of rapamycin (mTOR) pathway suppression and c-Jun NH2-terminal kinase (JNK) pathway activation. The ROS antioxidant N-acetylcysteine (NAC), the Akt-specific activator insulin-like growth factor-1 (IGF-1) and the JNK-specific inhibitor SP600125 attenuated SH-induced autophagy. Moreover, ROS activated autophagy via the Akt-mTOR and JNK pathways. Additionally, SH treatment may promote lysosome biogenesis through activating transcription factor EB (TFEB). The in vivo study found that SH effectively suppressed glioblastoma growth without exhibiting significant toxicity. In conclusion, our findings reveal a novel mechanism of action of SH in cancer cells via the induction of autophagy through ROS generation and autophagy-lysosome pathway activation; these findings also supply a new potential therapeutic agent for the treatment of human glioblastoma.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。