Pb Stress and Ectomycorrhizas: Strong Protective Proteomic Responses in Poplar Roots Inoculated with Paxillus involutus Isolate and Characterized by Low Root Colonization Intensity

Pb 胁迫和外生菌根:接种 Paxillus involutus 分离株的杨树根表现出强烈的保护性蛋白质组反应,且根系定植强度较低

阅读:6
作者:Agnieszka Szuba, Łukasz Marczak, Rafał Kozłowski

Abstract

The commonly observed increased heavy metal tolerance of ectomycorrhized plants is usually linked with the protective role of the fungal hyphae covering colonized plant root tips. However, the molecular tolerance mechanisms in heavy metal stressed low-colonized ectormyocrrhizal plants characterized by an ectomycorrhiza-triggered increases in growth are unknown. Here, we examined Populus × canescens microcuttings inoculated with the Paxillus involutus isolate, which triggered an increase in poplar growth despite successful colonization of only 1.9% ± 0.8 of root tips. The analyzed plants, lacking a mantle-a protective fungal biofilter-were grown for 6 weeks in agar medium enriched with 0.75 mM Pb(NO3)2. In minimally colonized 'bare' roots, the proteome response to Pb was similar to that in noninoculated plants (e.g., higher abundances of PM- and V-type H+ ATPases and lower abundance of ribosomal proteins). However, the more intensive activation of molecular processes leading to Pb sequestration or redirection of the root metabolic flux into amino acid and Pb chelate (phenolics and citrate) biosynthesis coexisted with lower Pb uptake compared to that in controls. The molecular Pb response of inoculated roots was more intense and effective than that of noninoculated roots in poplars.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。