Modification by covalent reaction or oxidation of cysteine residues in the tandem-SH2 domains of ZAP-70 and Syk can block phosphopeptide binding

通过共价反应或氧化 ZAP-70 和 Syk 串联 SH2 结构域中的半胱氨酸残基进行修饰可以阻断磷酸肽结合

阅读:21
作者:Patrick R Visperas, Jonathan A Winger, Timothy M Horton, Neel H Shah, Diane J Aum, Alyssa Tao, Tiago Barros, Qingrong Yan, Christopher G Wilson, Michelle R Arkin, Arthur Weiss, John Kuriyan

Abstract

Zeta-chain associated protein of 70 kDa (ZAP-70) and spleen tyrosine kinase (Syk) are non-receptor tyrosine kinases that are essential for T-cell and B-cell antigen receptor signalling respectively. They are recruited, via their tandem-SH2 (Src-homology domain 2) domains, to doubly phosphorylated immunoreceptor tyrosine-based activation motifs (ITAMs) on invariant chains of immune antigen receptors. Because of their critical roles in immune signalling, ZAP-70 and Syk are targets for the development of drugs for autoimmune diseases. We show that three thiol-reactive small molecules can prevent the tandem-SH2 domains of ZAP-70 and Syk from binding to phosphorylated ITAMs. We identify a specific cysteine residue in the phosphotyrosine-binding pocket of each protein (Cys39 in ZAP-70, Cys206 in Syk) that is necessary for inhibition by two of these compounds. We also find that ITAM binding to ZAP-70 and Syk is sensitive to the presence of H2O2 and these two cysteine residues are also necessary for inhibition by H2O2. Our findings suggest a mechanism by which the reactive oxygen species generated during responses to antigen could attenuate signalling through these kinases and may also inform the development of ZAP-70 and Syk inhibitors that bind covalently to their SH2 domains.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。