Bacterial over-expression and purification of the 3'phosphoadenosine 5'phosphosulfate (PAPS) reductase domain of human FAD synthase: functional characterization and homology modeling

人类 FAD 合酶的 3'磷酸腺苷 5'磷酸硫酸盐 (PAPS) 还原酶结构域的细菌过度表达和纯化:功能表征和同源性建模

阅读:4
作者:Angelica Miccolis, Michele Galluccio, Teresa Anna Giancaspero, Cesare Indiveri, Maria Barile

Abstract

FAD synthase (FADS, EC 2.7.7.2) is a key enzyme in the metabolic pathway that converts riboflavin into the redox cofactor, FAD. Human FADS is organized in two domains: -the 3'phosphoadenosine 5'phosphosulfate (PAPS) reductase domain, similar to yeast Fad1p, at the C-terminus, and -the resembling molybdopterin-binding domain at the N-terminus. To understand whether the PAPS reductase domain of hFADS is sufficient to catalyze FAD synthesis, per se, and to investigate the role of the molybdopterin-binding domain, a soluble "truncated" form of hFADS lacking the N-terminal domain (Δ(1-328)-hFADS) has been over-produced and purified to homogeneity as a recombinant His-tagged protein. The recombinant Δ(1-328)-hFADS binds one mole of FAD product very tightly as the wild-type enzyme. Under turnover conditions, it catalyzes FAD assembly from ATP and FMN and, at a much lower rate, FAD pyrophosphorolytic hydrolysis. The Δ(1-328)-hFADS enzyme shows a slight, but not significant, change of K(m) values (0.24 and 6.23 µM for FMN and ATP, respectively) and of k(cat) (4.2 × 10-2 s-1) compared to wild-type protein in the forward direction. These results demonstrate that the molybdopterin-binding domain is not strictly required for catalysis. Its regulatory role is discussed in light of changes in divalent cations sensitivity of the Δ(1-328)-hFADS versus wild-type protein.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。