RIPK1/RIPK3-Mediated Necroptosis is Involved in Sevoflurane-Induced Neonatal Neurotoxicity in the Rat Hippocampus

RIPK1/RIPK3 介导的坏死性凋亡与七氟烷诱发的大鼠海马神经毒性有关

阅读:5
作者:Rui Xu #, Yun Zhu #, Jie Jia, Wen Xian Li, Yi Lu

Abstract

Recent studies have shown that exposure to sevoflurane in developing brains causes neuronal apoptosis and cognitive dysfunction. "Necroptosis" is a novel pathway of necrosis. We introduced the caspase-specific inhibitor Z-VAD in addition to the receptor-interacting protein kinase 1 (RIPK1) inhibitor Nec-1, to ascertain the existence and importance of necroptosis. Sprague-Dawley rat pups postnatal day 7 were randomly assigned into one of five groups: control, sevoflurane + Z-VAD, sevoflurane + Nec-1, sevoflurane + Z-VAD + Nec-1 and 3% sevoflurane group. Neuronal apoptosis was evaluated by hematoxylin and eosin staining. The MTT assay was performed to evaluate cell viability. Immunofluorescence was employed to measure expression of RIPK1 and RIPK3. Western blots showing expression of RIPK1, RIPK3 and phosphorylation of mixed lineage kinase domain-like (p-MLKL) were used to explore the role of necroptosis. Binding of RIPK1/RIPK3 was detected via co-immunoprecipitation. Finally, the Morris water maze test was used to determine cognitive function. Exposure to 3% sevoflurane for 6 h induced neurotoxicity and inhibited cell viability. Neuron viability was low in the SEV, SEV + Z-VAD and SEV + Nec-1 groups. The study revealed that RIPK1 and RIPK3 protein expression increased significantly, but there was no significant differences between the SEV and SEV + Z-VAD groups. The expression of p-MLKL significantly increased in the SEV and SEV + Z-VAD groups, but not in the SEV + Nec-1 group or SEV + Z-VAD + Nec-1 group compared to the control group. Co-immunoprecipitation results showed that sevoflurane exposure enhanced binding of RIPK1/RIPK3 protein significantly. Blockade of apoptosis and necroptosis alleviated sevoflurane-induced cognitive impairment. Sevoflurane exposure elicited neurotoxicity within neonatal hippocampal neurons and tissues. Blockade of apoptosis or necroptosis alone did not attenuate sevoflurane-induced neurotoxicity (SIN). RIPK1/RIPK3-mediated necroptosis was involved in SIN in hippocampal neurons. SIN could be attenuated only by inhibiting both apoptosis and necroptosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。