CD27-Mediated Regulatory T Cell Depletion and Effector T Cell Costimulation Both Contribute to Antitumor Efficacy

CD27 介导的调节性 T 细胞耗竭和效应性 T 细胞共刺激均有助于抗肿瘤功效

阅读:6
作者:Anna Wasiuk, James Testa, Jeff Weidlick, Crystal Sisson, Laura Vitale, Jenifer Widger, Andrea Crocker, Lawrence J Thomas, Joel Goldstein, Henry C Marsh, Tibor Keler, Li-Zhen He

Abstract

CD27, a member of the TNFR superfamily, is constitutively expressed in most T cells and plays crucial roles in T cell effector functions. The costimulation and antitumor activity of CD27 agonistic Abs have been well documented in mouse models. Clinical testing of a human IgG1 anti-CD27 Ab, varlilumab (clone 1F5), is ongoing in cancer patients. In this study, we set out to further understand CD27 as an immunomodulatory target and to address the mechanism of antitumor efficacy using different IgG isotypes of 1F5 in human CD27-transgenic mice. 1F5mIgG1, the only isotype engaging inhibitory FcγRIIB expressed in B cells, elicited the most potent and broad immune response, but terminal differentiation, exhaustion, and apoptosis in the activated effector T cells were inevitable. Accordingly, this isotype was the most effective in eradicating BCL1 lymphoma but had limited efficacy in s.c. tumors. Conversely, 1F5mIgG2a, which interacts with cells expressing activating FcγRs, led to moderate immune activation, as well as to prominent reduction in the number and suppressive activity of regulatory T cells. These combined mechanisms imparted potent antitumor activity to 1F5mIgG2a, particularly against the s.c. tumors. 1F5hIgG1, varlilumab, showed balanced agonistic activity that was prominent at lower doses and depleting activity that was greater at higher doses. 1F5hIgG1 had good antitumor activity in all tumor models tested. Thus, both agonist and depleting properties contribute to the antitumor efficacy of CD27-targeted immunotherapy, and modulation of these activities in patients may be achieved by varying the dose and regimen.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。