Doxorubicin liposomes as an investigative model to study the skin permeation of nanocarriers

以阿霉素脂质体为研究模型,研究纳米载体的皮肤渗透性

阅读:7
作者:Cedar H A Boakye, Ketan Patel, Mandip Singh

Abstract

The objectives of this study were to develop an innovative investigative model using doxorubicin as a fluorophore to evaluate the skin permeation of nanocarriers and the impact of size and surface characteristics on their permeability. Different doxorubicin-loaded liposomes with mean particle size <130 nm and different surface chemistry were prepared by ammonium acetate gradient method using DPPC, DOPE, Cholesterol, DSPE-PEG 2000 and 1,1-Di-((Z)-octadec-9-en-1-yl) pyrrolidin-1-ium chloride (CY5)/DOTAP/1,2-dioleoyl-sn-glycero-3-phosphate (DOPA) as the charge modifier. There was minimal release of doxorubicin from the liposomes up to 8h; indicating that fluorescence observed within the skin layers was due to the intact liposomes. Liposomes with particle sizes >600 nm were restricted within the stratum corneum. DOTAP (p<0.01) and CY5 (p<0.05) liposomes demonstrated significant permeation into the skin than DOPA and PEG liposomes. Tape stripping significantly (p<0.01) enhanced the skin permeation of doxorubicin liposomes but TAT-decorated doxorubicin liposomes permeated better (p<0.005). Blockage of the hair follicles resulted in significant reduction in the extent and intensity of fluorescence observed within the skin layers. Overall, doxorubicin liposomes proved to be an ideal fluorophore-based model. The hair follicles were the major route utilized by the liposomes to permeate skin. Surface charge and particle size played vital roles in the extent of permeation.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。