Green Synthetic Approaches of 2-Hydrazonothiazol-4(5 H)-ones Using Sustainable Barium Oxide-Chitosan Nanocomposite Catalyst

采用可持续氧化钡-壳聚糖纳米复合催化剂进行 2-肼噻唑-4(5H)-酮的绿色合成方法

阅读:4
作者:Khaled D Khalil, Sayed M Riyadh, Ali H Bashal, Tariq Z Abolibda, Sobhi M Gomha

Abstract

The diverse applications of metal oxide-biopolymer matrix as a nanocomposite heterogenous catalyst have caused many researches to scrutinize the potential of this framework. In this study, a novel hybrid barium oxide-chitosan nanocomposite was synthesized through a facile and cost-effective co-precipitation method by doping barium oxide nanoparticles within the chitosan matrix at a weight percentage of 20 wt.% BaO-chitosan. A thin film of the novel hybrid material was produced by casting the nanocomposite solution in a petri dish. Several instrumental methods, including Fourier-transform infrared (FTIR), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD), were used to analyze and characterize the structure of the BaO-CS nanocomposite. The chemical interaction with barium oxide molecules resulted in a noticeable displacement of the most significant chitosan-specific peaks in the FTIR spectra. When the surface morphology of SEM graphs was analyzed, a dramatic morphological change in the chitosan surface was also discovered; this morphological change can be attributed to the surface adsorption of BaO molecules. Additionally, the patterns of the XRD demonstrated that the crystallinity of the material, chitosan, appears to be enhanced upon interaction with barium oxide molecules with the active sites, OH and NH2 groups, along the chitosan backbone. The prepared BaO-CS nanocomposite can be used successfully as an effective heterogenous recyclable catalyst for the reaction of N,N'-(alkane-diyl)bis(2-chloroacetamide) with 2-(arylidinehydrazine)-1-carbothioamide as a novel synthetic approach to prepare 2-hydrazonothiazol-4(5H)-ones. This new method provides a number of benefits, including quick and permissive reaction conditions, better reaction yields, and sustainable catalysts for multiple uses.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。