Modulation of cortical representations of sensory and contextual information underlies aversive associative learning

厌恶性联想学习的基础是调节感觉和情境信息的皮质表征

阅读:5
作者:Jiaman Dai, Qian-Quan Sun

Abstract

Cortical neurons encode both sensory and contextual information, yet it remains unclear how experiences modulate these cortical representations. Here, we demonstrate that trace eyeblink conditioning (TEC), an aversive associative-learning paradigm linking conditioned (CS) with unconditioned stimuli (US), finely tunes cortical coding at both population and single-neuron levels. Initially, we show that the primary somatosensory cortex (S1) is necessary for TEC acquisition, as evidenced by local muscimol administration. At the population level, TEC enhances activity in a small subset (∼20%) of CS- or US-responsive primary neurons (rPNs) while diminishing activity in non-rPNs, including locomotion-tuned or unresponsive PNs. Crucially, TEC learning modulates the encoding of sensory versus contextual information in single rPNs: CS-responsive neurons become less responsive, while US-responsive neurons gain responses to CS. Moreover, we find that the cholinergic pathway, via nicotinic receptors, underlies TEC-induced modulations. These findings suggest that experiences dynamically tune cortical representations through cholinergic pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。