Regulation of microglia effector functions by tumor necrosis factor signaling

肿瘤坏死因子信号调节小胶质细胞效应功能

阅读:14
作者:Ashley S Harms, Jae-Kyung Lee, Thi A Nguyen, Jianjun Chang, Kelly M Ruhn, Isaac Treviño, Malú G Tansey

Abstract

The exact biological role of the cytokine tumor necrosis factor (TNF) in the central nervous system (CNS) is not well understood; but overproduction of TNF by activated microglia has been implicated in neuronal death, suggesting that TNF inhibition in the CNS may be a viable neuroprotective strategy. We investigated the role of TNF signaling in regulation of microglia effector functions using molecular, cellular, and functional analyses of postnatal and adult microglia populations in the CNS. No differences were found by flow cytometric analyses in the basal activation state between TNF-null and wild-type mice. Although TNF-null microglia displayed an atypical morphology with cytoplasmic vacuoles in response to stimulation with lipopolysaccharide (LPS), the phagocytic response of TNF-null microglia to Escherichia coli particles in vitro was normal and there were no signs of enhanced caspase 3 activation or apoptosis. Functionally, conditioned media from LPS-stimulated TNF-null microglia was found to have significantly reduced levels of IL-10, IL-6, IL-1β, IL-12, and CXCL1 relative to wild-type microglia and exerted no cytotoxic effects on neurally differentiated dopaminergic (DA) MN9D cells. In contrast, incubation of wild-type microglia with TNF inhibitors selectively depleted the levels of soluble TNF and its cytotoxicity on MN9D cells. To distinguish whether reduced cytotoxicity by LPS-activated TNF-null microglia could be attributed to deficient autocrine TNF signaling, we employed primary microglia deficient in one or both TNF receptors (TNFR1 and TNFR2) in co-culture with MN9D cells and found that neither receptor is required to elicit LPS-evoked TNF production and cytotoxicity on DA cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。