Loss of Caveolin-1 in Metastasis-Associated Macrophages Drives Lung Metastatic Growth through Increased Angiogenesis

转移相关巨噬细胞中 Caveolin-1 的缺失通过增加血管生成来驱动肺转移性生长

阅读:10
作者:Ward Celus, Giusy Di Conza, Ana Isabel Oliveira, Manuel Ehling, Bruno M Costa, Mathias Wenes, Massimiliano Mazzone

Abstract

Although it is well established that tumor-associated macrophages take part in each step of cancer progression, less is known about the distinct role of the so-called metastasis-associated macrophages (MAMs) at the metastatic site. Previous studies reported that Caveolin-1 (Cav1) has both tumor-promoting and tumor-suppressive functions. However, the role of Cav1 in bone-marrow-derived cells is unknown. Here, we describe Cav1 as an anti-metastatic regulator in mouse models of lung and breast cancer pulmonary metastasis. Among all the recruited inflammatory cell populations, we show that MAMs uniquely express abundant levels of Cav1. Using clodronate depletion of macrophages, we demonstrate that macrophage Cav1 signaling is critical for metastasis and not for primary tumor growth. In particular, Cav1 inhibition does not affect MAM recruitment to the metastatic site but, in turn, favors angiogenesis. We describe a mechanism by which Cav1 in MAMs specifically restrains vascular endothelial growth factor A/vascular endothelial growth factor receptor 1 (VEGF-A/VEGFR1) signaling and its downstream effectors, matrix metallopeptidase 9 (MMP9) and colony-stimulating factor 1 (CSF1).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。