Differential stress induced c-Fos expression and identification of region-specific miRNA-mRNA networks in the dorsal raphe and amygdala of high-responder/low-responder rats

差异应激诱导的 c-Fos 表达和高反应/低反应大鼠背缝和杏仁核中区域特异性 miRNA-mRNA 网络的识别

阅读:5
作者:Joshua L Cohen, Anooshah E Ata, Nateka L Jackson, Elizabeth J Rahn, Ryne C Ramaker, Sara Cooper, Ilan A Kerman, Sarah M Clinton

Abstract

Chronic stress triggers a variety of physical and mental health problems, and how individuals cope with stress influences risk for emotional disorders. To investigate molecular mechanisms underlying distinct stress coping styles, we utilized rats that were selectively-bred for differences in emotionality and stress reactivity. We show that high novelty responding (HR) rats readily bury a shock probe in the defensive burying test, a measure of proactive stress coping behavior, while low novelty responding (LR) rats exhibit enhanced immobility, a measure of reactive coping. Shock exposure in the defensive burying test elicited greater activation of HR rats' caudal dorsal raphe serotonergic cells compared to LRs, but lead to more pronounced activation throughout LRs' amygdala (lateral, basolateral, central, and basomedial nuclei) compared to HRs. RNA-sequencing revealed 271 mRNA transcripts and 33 microRNA species that were differentially expressed in HR/LR raphe and amygdala. We mapped potential microRNA-mRNA networks by correlating and clustering mRNA and microRNA expression and identified networks that differed in either the HR/LR dorsal raphe or amygdala. A dorsal raphe network linked three microRNAs which were down-regulated in LRs (miR-206-3p, miR-3559-5p, and miR-378a-3p) to repression of genes related to microglia and immune response (Cd74, Cyth4, Nckap1l, and Rac2), the genes themselves were up-regulated in LR dorsal raphe. In the amygdala, another network linked miR-124-5p, miR-146a-5p, miR-3068-3p, miR-380-5p, miR-539-3p, and miR-7a-1-3p with repression of chromatin remodeling-related genes (Cenpk, Cenpq, Itgb3bp, and Mis18a). Overall this work highlights potential drivers of gene-networks and downstream molecular pathways within the raphe and amygdala that contribute to individual differences in stress coping styles and stress vulnerabilities.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。