Ribosome customization and functional diversification among P-stalk proteins regulate late poxvirus protein synthesis

核糖体定制和P-stalk蛋白的功能多样化调节晚期痘病毒蛋白的合成

阅读:26
作者:Natalia Khalatyan, Daphne Cornish, Aaron J Ferrell, Jeffrey N Savas, Peter S Shen, Judd F Hultquist, Derek Walsh

Abstract

Growing evidence suggests that ribosomes selectively regulate translation of specific mRNA subsets. Here, quantitative proteomics and cryoelectron microscopy demonstrate that poxvirus infection does not alter ribosomal subunit protein (RP) composition but skews 40S rotation states and displaces the 40S head domain. Genetic knockout screens employing metabolic assays and a dual-reporter virus further identified two RPs that selectively regulate non-canonical translation of late poxvirus mRNAs, which contain unusual 5' poly(A) leaders: receptor of activated C kinase 1 (RACK1) and RPLP2. RACK1 is a component of the altered 40S head domain, while RPLP2 is a subunit of the P-stalk, wherein RPLP0 anchors two heterodimers of RPLP1 and RPLP2 to the large 60S subunit. RPLP0 was required for global translation, yet RPLP1 was dispensable, while RPLP2 was specifically required for non-canonical poxvirus protein synthesis. From these combined results, we demonstrate that poxviruses structurally customize ribosomes and become reliant upon traditionally non-essential RPs from both ribosomal subunits for efficient initiation on their late mRNAs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。