Immunomodulatory effects of inhaled carbon monoxide on rat syngeneic small bowel graft motility

吸入一氧化碳对大鼠同种小肠移植运动的免疫调节作用

阅读:5
作者:A Nakao, B A Moore, N Murase, F Liu, B S Zuckerbraun, F H Bach, A M K Choi, M A Nalesnik, L E Otterbein, A J Bauer

Background

Intestinal transplantation provokes an intense inflammatory response within the graft muscularis that causes intestinal ileus. We hypothesised that endogenously produced anti-inflammatory substances could be utilised as novel therapeutics. Therefore, we tested the protective effects of inhaled carbon monoxide (CO) and an endogenous haeme oxygenase 1 (HO-1) anti-inflammatory mediator on transplant induced inflammatory responses and intestinal ileus in the rat.

Conclusions

CO inhalation significantly improved post-transplant motility and attenuated the inflammatory cytokine milieu in the syngeneic rat transplant model. Thus clinically providing CO, the end product of the anti-inflammatory HO-1 pathway, may prove to be an effective therapeutic adjunct for clinical small bowel transplantation.

Methods

Gastrointestinal transit of non-absorbable FITC labelled dextran and in vitro jejunal circular muscle contractions were measured in controls and syngeneic orthotopic transplanted animals with and without CO inhalation (250 ppm for 25 hours). Inflammatory mRNAs for interleukin (IL)-6, IL-1beta, tumour necrosis factor alpha (TNF-alpha), intercellular adhesion molecule 1 (ICAM-1), inducible nitric oxide (iNOS), cyclooxygenase 2 (COX-2), and IL-10 were quantified by real time reverse transcriptase-polymerase chain reaction and HO-1 by northern blot. Histochemical stains characterised neutrophil infiltration and enterocyte apoptosis.

Results

Transplantation delayed transit and suppressed jejunal circular muscle contractility. Transplantation induced dysmotility was significantly improved by CO inhalation. Transplantation initiated a significant upregulation in IL-6, IL-1beta, TNF-alpha, ICAM-1, iNOS, COX-2, and HO-1 mRNAs with the graft muscularis. CO inhalation significantly decreased expression of IL-6, IL-1beta, iNOS, and COX-2 mRNAs. CO also significantly decreased serum nitrite levels (iNOS activity). Conclusions: CO inhalation significantly improved post-transplant motility and attenuated the inflammatory cytokine milieu in the syngeneic rat transplant model. Thus clinically providing CO, the end product of the anti-inflammatory HO-1 pathway, may prove to be an effective therapeutic adjunct for clinical small bowel transplantation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。