Melatonin Supplementation Alleviates Impaired Spatial Memory by Influencing Aβ1-42 Metabolism via γ-Secretase in the icvAβ1-42 Rat Model with Pinealectomy

褪黑激素补充剂可通过影响松果体切除的 icvAβ1-42 大鼠模型中的 γ-分泌酶 Aβ1-42 代谢来缓解空间记忆受损

阅读:5
作者:Irina Georgieva, Jana Tchekalarova, Zlatina Nenchovska, Lidia Kortenska, Rumiana Tzoneva

Abstract

In the search for Alzheimer's disease (AD) therapies, most animal models focus on familial AD, which accounts for a small fraction of cases. The majority of AD cases arise from stress factors, such as oxidative stress, leading to neurological changes (sporadic AD). Early in AD progression, dysfunction in γ-secretase causes the formation of insoluble Aβ1-42 peptides, which aggregate into senile plaques, triggering neurodegeneration, cognitive decline, and circadian rhythm disturbances. To better model sporadic AD, we used a new AD rat model induced by intracerebroventricular administration of Aβ1-42 oligomers (icvAβ1-42) combined with melatonin deficiency via pinealectomy (pin). We validated this model by assessing spatial memory using the radial arm maze test and measuring Aβ1-42 and γ-secretase levels in the frontal cortex and hippocampus with ELISA. The icvAβ1-42 + pin model experienced impaired spatial memory and increased Aβ1-42 and γ-secretase levels in the frontal cortex and hippocampus, effects not seen with either icvAβ1-42 or the pin alone. Chronic melatonin treatment reversed memory deficits and reduced Aβ1-42 and γ-secretase levels in both structures. Our findings suggest that our icvAβ1-42 + pin model is extremely valuable for future AD research.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。