Same but different - pseudo-pectin in the charophytic alga Chlorokybus atmophyticus

相同但不同——轮藻 Chlorokybus atmophyticus 中的拟果胶

阅读:5
作者:Marie N Rapin, Lorna Murray, Ian H Sadler, John H Bothwell, Stephen C Fry

Abstract

All land-plant cell walls possess hemicelluloses, cellulose and anionic pectin. The walls of their cousins, the charophytic algae, exhibit some similarities to land plants' but also major differences. Charophyte 'pectins' are extractable by conventional land-plant methods, although they differ significantly in composition. Here, we explore 'pectins' of an early-diverging charophyte, Chlorokybus atmophyticus, characterising the anionic polysaccharides that may be comparable to 'pectins' in other streptophytes. Chlorokybus 'pectin' was anionic and upon acid hydrolysis gave GlcA, GalA and sulphate, plus neutral sugars (Ara≈Glc>Gal>Xyl); Rha was undetectable. Most Gal was the l-enantiomer. A relatively acid-resistant disaccharide was characterised as β-d-GlcA-(1→4)-l-Gal. Two Chlorokybus 'pectin' fractions, separable by anion-exchange chromatography, had similar sugar compositions but different sulphate-ester contents. No sugars were released from Chlorokybus 'pectin' by several endo-hydrolases [(1,5)-α-l-arabinanase, (1,4)-β-d-galactanase, (1,4)-β-d-xylanase, endo-polygalacturonase] and exo-hydrolases [α- and β-d-galactosidases, α-(1,6)-d-xylosidase]. 'Driselase', which hydrolyses most land-plant cell wall polysaccharides to mono- and disaccharides, released no sugars except traces of starch-derived Glc. Thus, the Ara, Gal, Xyl and GalA of Chlorokybus 'pectin' were not non-reducing termini with configurations familiar from land-plant polysaccharides (α-l-Araf, α- and β-d-Galp, α- and β-d-Xylp and α-d-GalpA), nor mid-chain residues of α-(1→5)-l-arabinan, β-(1→4)-d-galactan, β-(1→4)-d-xylan or α-(1→4)-d-galacturonan. In conclusion, Chlorokybus possesses anionic 'pectic' polysaccharides, possibly fulfilling pectic roles but differing fundamentally from land-plant pectin. Thus, the evolution of land-plant pectin since the last common ancestor of Chlorokybus and land plants is a long and meandering path involving loss of sulphate, most l-Gal and most d-GlcA; re-configuration of Ara, Xyl and GalA; and gain of Rha.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。