In vitro 3D culture lung model from expanded primary cystic fibrosis human airway cells

来自扩增的原代囊性纤维化人气道细胞的体外三维培养肺模型

阅读:15
作者:Rachael E Rayner, Jack Wellmerling, Wissam Osman, Sean Honesty, Maria Alfaro, Mark E Peeples, Estelle Cormet-Boyaka

Background

In vitro cystic fibrosis (CF) models are crucial for understanding the mechanisms and consequences of the disease. They are also the gold standard for pre-clinical efficacy studies of current and novel CF drugs. However, few studies have investigated expansion and differentiation of primary CF human bronchial epithelial (CF-HBE) cells. Here we describe culture conditions to expand primary CF airway cells while preserving their ability to differentiate into 3D epithelial cultures expressing functional cystic fibrosis transmembrane conductance regulator (CFTR) ion channels that responds to CFTR modulators.

Conclusions

CF donor-derived airway cells can be expanded without the use of feeder cells or additional ROCK inhibitor, and still achieve optimal 3D epithelial cultures that respond to CFTR modulators. The study of rare CF mutations could benefit from cell expansion and could lead to the design of personalized medicine/treatments.

Methods

Primary CF airway cells were expanded using PneumaCultTM-Ex Plus (StemCell Technologies) medium with no feeder cells or added Rho kinase (ROCK) inhibitor. Differentially passaged CF-HBE cells at the air-liquid interface (ALI) were characterized phenotypically and functionally in response to the CFTR corrector drug VX-661 (Tezacaftor).

Results

CF-HBE primary cells, expanded up to six passages (~25 population doublings), differentiated into 3D epithelial cultures as evidenced by trans-epithelial electrical resistance (TEER) of >400 Ohms∙cm2 and presence of pseudostratified columnar ciliated epithelium with goblet cells. However, up to passage five cells from most donors showed increased CFTR-mediated short-circuit currents when treated with the corrector drug, VX-661. Ciliary beat frequency (CBF) also increased with the corrector VX-661. Conclusions: CF donor-derived airway cells can be expanded without the use of feeder cells or additional ROCK inhibitor, and still achieve optimal 3D epithelial cultures that respond to CFTR modulators. The study of rare CF mutations could benefit from cell expansion and could lead to the design of personalized medicine/treatments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。