Heterogeneity in oligodendrocyte precursor cell proliferation is dynamic and driven by passive bioelectrical properties

少突胶质细胞前体细胞增殖的异质性是动态的,并由被动生物电特性驱动

阅读:7
作者:Helena Pivoňková, Sergey Sitnikov, Yasmine Kamen, An Vanhaesebrouck, Moritz Matthey, Sonia Olivia Spitzer, Yan Ting Ng, Chenyue Tao, Omar de Faria Jr, Balazs Viktor Varga, Ragnhildur Thóra Káradóttir

Abstract

Oligodendrocyte precursor cells (OPCs) generate myelinating oligodendrocytes and are the main proliferative cells in the adult central nervous system. OPCs are a heterogeneous population, with proliferation and differentiation capacity varying with brain region and age. We demonstrate that during early postnatal maturation, cortical, but not callosal, OPCs begin to show altered passive bioelectrical properties, particularly increased inward potassium (K+) conductance, which correlates with G1 cell cycle stage and affects their proliferation potential. Neuronal activity-evoked transient K+ currents in OPCs with high inward K+ conductance potentially release OPCs from cell cycle arrest. Eventually, OPCs in all regions acquire high inward K+ conductance, the magnitude of which may underlie differences in OPC proliferation between regions, with cells being pushed into a dormant state as they acquire high inward K+ conductance and released from dormancy by synchronous neuronal activity. Age-related accumulation of OPCs with high inward K+ conductance might contribute to differentiation failure.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。