Endothelial p300 Promotes Portal Hypertension and Hepatic Fibrosis Through C-C Motif Chemokine Ligand 2-Mediated Angiocrine Signaling

内皮 p300 通过 CC 基序趋化因子配体 2 介导的血管分泌信号传导促进门脉高压和肝纤维化

阅读:6
作者:Jinhang Gao, Bo Wei, Mengfei Liu, Petra Hirsova, Tejasav S Sehrawat, Sheng Cao, Xiao Hu, Fei Xue, Usman Yaqoob, Ningling Kang, Huarui Cui, William C K Pomerantz, Enis Kostallari, Vijay H Shah

Aims

During liver fibrosis, liver sinusoidal endothelial cells (LSECs) release angiocrine signals to recruit inflammatory cells into the liver. p300, a master regulator of gene transcription, is associated with pathological inflammatory response. Therefore, we examined how endothelial p300 regulates angiocrine signaling and inflammation related to portal hypertension and fibrogenesis. Approach and

Approach and results

CCl4 or partial inferior vena cava ligation (pIVCL) was used to induce liver injury. Mice with LSEC-specific p300 deletion (p300LSECΔ/Δ ) or C-C motif chemokine ligand 2 (Ccl2) deficiency, nuclear factor kappa B (NFκB)-p50 knockout mice, and bromodomain containing 4 (BRD4) inhibitors in wild-type mice were used to investigate mechanisms of inflammation regulation. Leukocytes were analyzed by mass cytometry by time-of-flight. Epigenetic histone marks were modified by CRISPR endonuclease-deficient CRISPR-associated 9-fused with the Krüppel associated box domain (CRISPR-dCas9-KRAB)-mediated epigenome editing. Portal pressure and liver fibrosis were reduced in p300LSECΔ/Δ mice compared to p300fl/fl mice following liver injury. Accumulation of macrophages was also reduced in p300LSECΔ/Δ mouse livers. Ccl2 was the most up-regulated chemokine in injured LSECs, but its increase was abrogated in p300LSECΔ/Δ mice. While the macrophage accumulation was increased in NFκB-p50 knockout mice with enhanced NFκB activity, it was reduced in mice with LSEC-specific Ccl2 deficiency and mice treated with specific BRD4 inhibitors. In vitro, epigenome editing of CCL2 enhancer and promoter regions by CRISPR-dCas9-KRAB technology repressed TNFα-induced CCL2 transcription through H3K9 trimethylation. In contrast, TNFα activated CCL2 transcription by promoting p300 interaction with NFκB and BRD4, leading to histone H3 lysine 27 acetylation at CCL2 enhancer and promoter regions. Conclusions: In summary, endothelial p300 interaction with NFκB and BRD4 increases CCL2 expression, leading to macrophage accumulation, portal hypertension, and liver fibrosis. Inhibition of p300 and its binding partners might serve as therapy in the treatment of liver diseases.

Background and aims

During liver fibrosis, liver sinusoidal endothelial cells (LSECs) release angiocrine signals to recruit inflammatory cells into the liver. p300, a master regulator of gene transcription, is associated with pathological inflammatory response. Therefore, we examined how endothelial p300 regulates angiocrine signaling and inflammation related to portal hypertension and fibrogenesis. Approach and

Conclusions

In summary, endothelial p300 interaction with NFκB and BRD4 increases CCL2 expression, leading to macrophage accumulation, portal hypertension, and liver fibrosis. Inhibition of p300 and its binding partners might serve as therapy in the treatment of liver diseases.

Results

CCl4 or partial inferior vena cava ligation (pIVCL) was used to induce liver injury. Mice with LSEC-specific p300 deletion (p300LSECΔ/Δ ) or C-C motif chemokine ligand 2 (Ccl2) deficiency, nuclear factor kappa B (NFκB)-p50 knockout mice, and bromodomain containing 4 (BRD4) inhibitors in wild-type mice were used to investigate mechanisms of inflammation regulation. Leukocytes were analyzed by mass cytometry by time-of-flight. Epigenetic histone marks were modified by CRISPR endonuclease-deficient CRISPR-associated 9-fused with the Krüppel associated box domain (CRISPR-dCas9-KRAB)-mediated epigenome editing. Portal pressure and liver fibrosis were reduced in p300LSECΔ/Δ mice compared to p300fl/fl mice following liver injury. Accumulation of macrophages was also reduced in p300LSECΔ/Δ mouse livers. Ccl2 was the most up-regulated chemokine in injured LSECs, but its increase was abrogated in p300LSECΔ/Δ mice. While the macrophage accumulation was increased in NFκB-p50 knockout mice with enhanced NFκB activity, it was reduced in mice with LSEC-specific Ccl2 deficiency and mice treated with specific BRD4 inhibitors. In vitro, epigenome editing of CCL2 enhancer and promoter regions by CRISPR-dCas9-KRAB technology repressed TNFα-induced CCL2 transcription through H3K9 trimethylation. In contrast, TNFα activated CCL2 transcription by promoting p300 interaction with NFκB and BRD4, leading to histone H3 lysine 27 acetylation at CCL2 enhancer and promoter regions. Conclusions: In summary, endothelial p300 interaction with NFκB and BRD4 increases CCL2 expression, leading to macrophage accumulation, portal hypertension, and liver fibrosis. Inhibition of p300 and its binding partners might serve as therapy in the treatment of liver diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。