Promiscuous splicing-derived hairpins are dominant substrates of tailing-mediated defense of miRNA biogenesis in mammals

混杂剪接衍生的发夹结构是哺乳动物尾部介导的 miRNA 生物合成防御的主要底物

阅读:4
作者:Seungjae Lee, David Jee, Sid Srivastava, Acong Yang, Abhinav Ramidi, Renfu Shang, Diane Bortolamiol-Becet, Sébastien Pfeffer, Shuo Gu, Jiayu Wen, Eric C Lai

Abstract

Canonical microRNA (miRNA) hairpins are processed by the RNase III enzymes Drosha and Dicer into ∼22 nt RNAs loaded into an Argonaute (Ago) effector. In addition, splicing generates numerous intronic hairpins that bypass Drosha (mirtrons) to yield mature miRNAs. Here, we identify hundreds of previously unannotated, splicing-derived hairpins in intermediate-length (∼50-100 nt) but not small (20-30 nt) RNA data. Since we originally defined mirtrons from small RNA duplexes, we term this larger set as structured splicing-derived RNAs (ssdRNAs). These associate with Dicer and/or Ago complexes, but generally accumulate modestly and are poorly conserved. We propose they contaminate the canonical miRNA pathway, which consequently requires defense against the siege of splicing-derived substrates. Accordingly, ssdRNAs/mirtrons comprise dominant hairpin substrates for 3' tailing by multiple terminal nucleotidyltransferases, notably TUT4/7 and TENT2. Overall, the rampant proliferation of young mammalian mirtrons/ssdRNAs, coupled with an inhibitory molecular defense, comprises a Red Queen's race of intragenomic conflict.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。