Lipid-restricted recognition of mycobacterial lipoglycans by human pulmonary surfactant protein A: a surface-plasmon-resonance study

人类肺表面活性蛋白 A 对分枝杆菌脂聚糖的脂质限制识别:表面等离子体共振研究

阅读:12
作者:Stéphane Sidobre, Germain Puzo, Michel Rivière

Abstract

The human pulmonary surfactant protein A (hSP-A), a member of the mammalian collectin family, is thought to play a key defensive role against airborne invading pulmonary pathogens, among which is Mycobacterium tuberculosis, the aetiologic agent of tuberculosis. hSP-A has been shown to promote the uptake and the phagocytosis of pathogenic bacilli through the recognition and the binding of carbohydrate motifs on the invading pathogen surface. Recently we identified lipomannan and mannosylated lipoarabinomannan (ManLAM), two major mycobacterial cell-wall lipoglycans, as potential ligands for binding of hSP-A. We demonstrated that both the terminal mannose residues and the fatty acids are critical for binding, whereas the inner arabinosyl and mannosyl domains do not participate. In the present study we developed a surface-plasmon-resonance assay to analyse the molecular basis for the recognition of ManLAM by hSP-A and to try to define further the role of the lipidic aglycone moiety. Binding of ManLAM to immobilized hSP-A was consistent with the simplest one-to-one interaction model involving a single class of carbohydrate-binding site. This observation strongly suggests that the lipid moiety of ManLAM does not directly interact with hSP-A, but is rather responsible for the macromolecular organization of the lipoglycan, which may be necessary for efficient recognition of the terminal mannosyl epitopes. The indirect, structural role of the lipoglycan lipidic component is further supported by the complete lack of interaction with hSP-A in the presence of a low concentration of mild detergent.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。