GABA transaminase inhibition induces spontaneous and enhances depolarization-evoked GABA efflux via reversal of the GABA transporter

GABA 转氨酶抑制可通过逆转 GABA 转运体来诱导自发性 GABA 流出,并增强去极化引起的 GABA 流出

阅读:2
作者:Y Wu, W Wang, G B Richerson

Abstract

The GABA transporter can reverse with depolarization, causing nonvesicular GABA release. However, this is thought to occur only under pathological conditions. Patch-clamp recordings were made from rat hippocampal neurons in primary cell cultures. Inhibition of GABA transaminase with the anticonvulsant gamma-vinyl GABA (vigabatrin; 0.05-100 microm) resulted in a large leak current that was blocked by bicuculline (50 microm). This leak current occurred in the absence of extracellular calcium and was blocked by the GABA transporter antagonist SKF-89976a (5 microm). These results indicate that vigabatrin induces spontaneous GABA efflux from neighboring cells via reversal of GABA transporters, subsequently leading to the stimulation of GABA(A) receptors on the recorded neuron. The leak current increased slowly over 4 d of treatment with 100 microm vigabatrin, at which time it reached an equivalent conductance of 9.0 +/- 4.9 nS. Blockade of glutamic acid decarboxylase with semicarbazide (2 mm) decreased the leak current that was induced by vigabatrin by 47%. In untreated cells, carrier-mediated GABA efflux did not occur spontaneously but was induced by an increase in [K(+)](o) from 3 to as little as 6 mm. Vigabatrin enhanced this depolarization-evoked nonvesicular GABA release and also enhanced the heteroexchange release of GABA induced by nipecotate. Thus, the GABA transporter normally operates near its equilibrium and can be easily induced to reverse by an increase in cytosolic [GABA] or mild depolarization. We propose that this transporter-mediated nonvesicular GABA release plays an important role in neuronal inhibition under both physiological and pathophysiological conditions and is the target of some anticonvulsants.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。