Evidence for a clathrin-independent endocytic pathway for APP internalization in the neuronal somatodendritic compartment

有证据表明,在神经元体树突状区内,APP 内化存在一种不依赖网格蛋白的内吞途径

阅读:5
作者:Jonathan Aow, Tzu-Rung Huang, Yeek Teck Goh, Alfred Xuyang Sun, Gopal Thinakaran, Edward H Koo

Abstract

Amyloid precursor protein (APP) internalization via clathrin-/dynamin-mediated endocytosis (CME) mediated by its YENPTY motif into endosomes containing β-secretase is proposed to be critical for amyloid-beta (Aβ) production. Here, we show that somatodendritic APP internalization in primary rodent neurons is not blocked by inhibiting dynamin or mutating the YENPTY motif, in contrast to non-neuronal cell lines. These phenomena, confirmed in induced human neurons under dynamin inhibition, occur during basal conditions and chemical long-term-depression stimulus, pointing to a clathrin-independent internalization pathway for somatodendritic APP. Mutating the YENPTY motif does not alter APP recycling, degradation, or endolysosomal colocalization. However, both dynamin inhibition and the YENPTY mutant significantly decrease secreted Aβ in neurons, suggesting that internalized somatodendritic APP may not constitute a major source of Aβ. Interestingly, like APP, somatodendritic low-density lipoprotein receptor (LDLR) internalization does not require its CME motif. These results highlight intriguing differences in neuronal internalization pathways and refine our understanding of Aβ production and secretion.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。