Parturition and postpartum dietary change altered ruminal pH and the predicted functions of rumen bacterial communities but did not alter the bacterial composition in Holstein cows

分娩和产后饮食变化改变了瘤胃 pH 值和瘤胃细菌群落的预期功能,但并没有改变荷斯坦奶牛的细菌组成

阅读:5
作者:Yo-Han Kim, Atsushi Kimura, Toshihisa Sugino, Shigeru Sato

Abstract

We investigated the temporal dynamics of ruminal pH and the composition and predicted functions of the rumen bacterial community in Holstein cows during the periparturient period. Eight multiparous Holstein cows (body weight; 707.4 ± 29.9 kg, parity; 3.6 ± 0.6) were used for continuous reticulo-ruminal pH measurement, among which five were also used for bacterial community analysis. Rumen fluid samples were collected at 3 weeks before and 2 and 6 weeks after parturition, and blood samples were collected 3 weeks before and 0, 2, 4, and 6 weeks after parturition. After the parturition, reduction in the 1-h mean reticulo-ruminal pH was associated with a significant (P < 0.05) increase in total volatile fatty acid concentration. However, with the exception of a significant change in an unclassified genus of Prevotellaceae (P < 0.05), we detected no significant changes in the compositions of major bacterial phyla or genera or diversity indices during the periparturient period. On the basis of predicted functional analysis, we identified a total of 53 MetaCyc pathways (45 upregulated), 200 enzyme commissions (184 upregulated), and 714 Kyoto Encyclopedia of Genes and Genomes orthologs (667 upregulated) at 6 weeks postpartum that were significantly (P < 0.05) different to those at 3 weeks prepartum. Among the 14 MetaCyc pathways (P < 0.05) in which pyruvate is an end product, PWY-3661 [log2-fold change (FC) = 5.49, false discovery rate (FDR) corrected P < 0.001] was the most highly upregulated pyruvate-producing pathway. In addition, P381-PWY [adenosylcobalamin biosynthesis II (aerobic); FC = 5.48, FDR corrected P < 0.001] was the second most upregulated adenosylcobalamin (Vitamin B12)-producing pathway. In contrast, PWY-2221 (FC = -4.54, FDR corrected P = 0.003), predominantly found in pectinolytic bacteria, was the most downregulated pathway. Our findings indicate that changes in rumen bacterial community structure are not strictly associated with transitions in parturition or diet; however, we did observe changes in reticulo-ruminal pH and the metabolic adaptation of predicted functional pathways. Consequently, predictive analysis of postpartum functional pathways may enable us to gain insights into the underlying functional adaptations of bacterial communities in Holstein cows during the periparturient period.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。