Machine Learning Techniques to Classify Healthy and Diseased Cardiomyocytes by Contractility Profile

机器学习技术根据收缩力特征对健康和患病的心肌细胞进行分类

阅读:5
作者:Diogo Teles, Youngbin Kim, Kacey Ronaldson-Bouchard, Gordana Vunjak-Novakovic

Abstract

Cardiomyocytes derived from human induced pluripotent stem (iPS) cells enable the study of cardiac physiology and the developmental testing of new therapeutic drugs in a human setting. In parallel, machine learning methods are being applied to biomedical science in unprecedented ways. Machine learning has been used to distinguish healthy from diseased cardiomyocytes using calcium (Ca2+) transient signals. Most Ca2+ transient signals are obtained via terminal assays that do not permit longitudinal studies, although some recently developed options can circumvent these concerns. Here, we describe the use of machine learning to identify healthy and diseased cardiomyocytes according to their contractility profiles, which are derived from brightfield videos. This noncontact, label-free approach allows for the continued cultivation of cells after they have been evaluated for use in other assays and can be readily extended to organs-on-chip. To demonstrate utility, we assessed contractility profiles of cardiomyocytes obtained from patients with Timothy Syndrome (TS), a long QT disease which can lead to fatal arrhythmias, and from healthy individuals. The videos were processed and classified using machine learning methods and their performance was evaluated according to several parameters. The trained algorithms were able to distinguish the TS cardiomyocytes from healthy controls and classify two different healthy controls. The proposed computational machine learning evaluation of human iPS cell-derived cardiomyocytes' contractility profiles has the potential to identify other genetic proarrhythmic events, screen therapeutic agents for inducing or suppressing long QT events, and predict drug-target interactions. The same approach could be readily extended to the evaluation of engineered cardiac tissues within single-tissue and multi-tissue organs-on-chip.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。