Cannabinoid-1 receptor regulates mitochondrial dynamics and function in renal proximal tubular cells

大麻素-1受体调节肾近端小管细胞的线粒体动力学和功能

阅读:5
作者:Adi Drori, Anna Permyakova, Rivka Hadar, Shiran Udi, Alina Nemirovski, Joseph Tam

Aims

To evaluate the specific role of the endocannabinoid/cannabinoid type-1 (CB1 R) system in modulating mitochondrial dynamics in the metabolically active renal proximal tubular cells (RPTCs). Materials and

Conclusions

CB1 R plays a key role in inducing mitochondrial fragmentation in RPTCs, leading to a decline in the organelle's function and contributing to the renal tubular injury associated with lipotoxicity and other metabolic diseases.

Methods

We utilized mitochondrially-targeted GFP in live cells (wild-type and null for the CB1 R) and electron microscopy in kidney sections of RPTC-CB1 R-/- mice and their littermate controls. In both in vitro and in vivo conditions, we assessed the ability of CB1 R agonism or fatty acid flux to modulate mitochondrial architecture and function.

Results

Direct stimulation of CB1 R resulted in mitochondrial fragmentation in RPTCs. This process was mediated, at least in part, by modulating the phosphorylation levels of the canonical fission protein dynamin-related protein 1 on both S637 and S616 residues. CB1 R-induced mitochondrial fission was associated with mitochondrial dysfunction, as documented by reduced oxygen consumption and ATP production, increased reactive oxygen species and cellular lactate levels, as well as a decline in mitochondrial biogenesis. Likewise, we documented that exposure of RPTCs to a fatty acid flux induced CB1 R-dependent mitochondrial fission, lipotoxicity and cellular dysfunction. Conclusions: CB1 R plays a key role in inducing mitochondrial fragmentation in RPTCs, leading to a decline in the organelle's function and contributing to the renal tubular injury associated with lipotoxicity and other metabolic diseases.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。