Nucleotide Messenger Signaling of Staphylococci in Responding to Nitric Oxide - Releasing Biomaterials

葡萄球菌对释放一氧化氮的生物材料的反应中的核苷酸信使信号

阅读:5
作者:Alyssa Ochetto, Dongxiao Sun, Christopher A Siedlecki, Li-Chong Xu

Abstract

Nitric oxide (NO) releasing biomaterials are a promising approach against medical device associated microbial infection. In contrast to the bacteria-killing effects of NO at high concentrations, NO at low concentrations serves as an important signaling molecule to inhibit biofilm formation or disperse mature biofilms by regulating the intracellular nucleotide second messenger signaling network such as cyclic dimeric guanosine monophosphate (c-di-GMP) for many Gram-negative bacterial strains. However, Gram-positive staphylococcal bacteria are the most commonly diagnosed microbial infections on indwelling devices, but much less is known about the nucleotide messengers and their response to NO as well as the mechanism by which NO inhibits biofilm formation. This study investigated the cyclic nucleotide second messengers c-di-GMP, cyclic dimeric adenosine monophosphate (c-di-AMP), and cyclic adenosine monophosphate (cAMP) in both Staphylococcus aureus (S. aureus) Newman D2C and Staphylococcus epidermidis (S. epidermidis) RP62A after incubating with S-nitroso-N-acetylpenicillamine (SNAP, NO donor) impregnated polyurethane (PU) films. Results demonstrated that NO release from the polymer films significantly reduced the c-di-GMP levels in S. aureus planktonic and sessile cells, and these bacteria showed inhibited biofilm formation. However, the effect of NO release on c-di-GMP in S. epidermidis was weak, but rather, S. epidermidis showed significant reduction in c-di-AMP levels in response to NO release and also showed reduced biofilm formation. Results strongly suggest that NO regulates the nucleotide second messenger signaling network in different ways for these two bacteria, but for both bacteria, these changes in signaling affect the formations of biofilms. These findings provide cues to understand the mechanism of Staphylococcus biofilm inhibition by NO and suggest novel targets for antibiofilm interventions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。