Poplar woody taproot under bending stress: the asymmetric response of the convex and concave sides

杨树木质主根在弯曲应力作用下的凸面和凹面的不对称响应

阅读:5
作者:Elena De Zio, Dalila Trupiano, Antonio Montagnoli, Mattia Terzaghi, Donato Chiatante, Alessandro Grosso, Mauro Marra, Andrea Scaloni, Gabriella S Scippa

Abstract

Background and Aims Progress has been made in understanding the physiological and molecular basis of root response to mechanical stress, especially in the model plant Arabidopsis thaliana, in which bending causes the initiation of lateral root primordia toward the convex side of the bent root. In the case of woody roots, it has been reported that mechanical stress induces an asymmetric distribution of lateral roots and reaction wood formation, but the mechanisms underlying these responses are largely unknown. In the present work, the hypothesis was tested that bending could determine an asymmetric response in the two sides of the main root axis as cells are stretched on the convex side and compressed on the concave side. Methods Woody taproots of 20 seedlings were bent to an angle of 90° using a steel net. Changes in the anatomy, lignin and phytohormone content and proteome expression in the two sides of the bent root were analysed; anatomical changes, including dissimilarities and similarities to those found in poplar bent woody stem, were also considered. Key Results Compression forces at the concave side of poplar root induced the formation of reaction wood which presented a high lignin content and was associated with the induction of cambium cell activity. Auxin seemed to be the main hormone triggering lignin deposition and cell wall strengthening in the concave sides. Abscisic acid appeared to function in the water stress response induced by xylem structures and/or osmotic alterations in the compression sides, whereas gibberellins may control cell elongation and gravitropisms. Conclusions Poplar root reaction wood showed characteristics different from those produced in bent stem. Besides providing biomechanical functions, a bent root ensures water uptake and transport in the deforming condition induced by tension and compression forces by two different strategies: an increase in xylem thickness in the compressed side, and lateral root formation in the tension side.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。