Resveratrol Attenuates Fibrosis and Alters Signaling Pathways in Diabetic Cardiac and Skeletal Muscles and Adipose Tissue Without Reversing Structural Damage

白藜芦醇可减轻糖尿病心脏、骨骼肌和脂肪组织的纤维化并改变信号通路,而不会逆转结构损伤

阅读:7
作者:Célia Maria Cássaro Strunz, Alessandra Roggerio, Paula Lázara Cruz, Luiz Alberto Benvenuti, Maria Cláudia Irigoyen, Antonio de Padua Mansur

Abstract

Resveratrol (RSV) improves metabolic functions, but its tissue-specific effects on diabetes remain unclear. This study investigated RSV's impact on molecular pathways in an experimental model of diabetes in cardiac and skeletal muscles and adipose tissue. Wistar rats were assigned to control (C), control treated with RSV (RC), diabetic (D), and diabetic treated with RSV (RD). Diabetes was induced using streptozotocin and nicotinamide, and RSV was administered for six weeks. In diabetic rats, RSV treatment significantly reduced collagen accumulation in cardiac and skeletal muscle tissues compared to untreated diabetic controls, although it did not restore muscle mass. Adipose tissue in diabetic rats exhibited a significant reduction of 3.4 times in collagen levels following RSV treatment. However, this reduction was not associated with any measurable improvement in tissue function. In cardiac tissue, RSV downregulated phosphorylated protein kinase B (AKT)/AKT and phosphorylated ribosomal protein S6 (rpS6)/rpS6 while mammalian target of rapamycin (mTOR) activity remained unchanged. In skeletal muscle, RSV suppressed rpS6 phosphorylation without affecting (mTOR) signaling. RSV enhanced mTOR and Beclin-1 expression in adipose tissue, though metabolic dysfunction persisted. RSV reduced receptors for advanced glycation end-product expression in all tissues, indicating the modulation of hyperglycemia-driven pathways. RSV improved fibrosis and signaling pathways but failed to reverse abnormal tissue growth patterns, including cardiac hypertrophy, skeletal muscle atrophy, and adipose tissue atrophy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。