Aspartate-107 and leucine-109 facilitate efficient coupling of glutamine hydrolysis to CTP synthesis by Escherichia coli CTP synthase

天冬氨酸-107 和亮氨酸-109 促进大肠杆菌 CTP 合酶将谷氨酰胺水解与 CTP 合成有效结合

阅读:5
作者:Akshai Iyengar, Stephen L Bearne

Abstract

CTP synthase catalyses the ATP-dependent formation of CTP from UTP using either NH(3) or L-glutamine as the nitrogen source. GTP is required as an allosteric effector to promote glutamine hydrolysis. In an attempt to identify nucleotide-binding sites, scanning alanine mutagenesis was conducted on a highly conserved region of amino acid sequence (residues 102-118) within the synthase domain of Escherichia coli CTP synthase. Mutant K102A CTP synthase exhibited wild-type activity with respect to NH(3) and glutamine; however, the R105A, D107A, L109A and G110A enzymes exhibited wild-type NH(3)-dependent activity and affinity for glutamine, but impaired glutamine-dependent CTP formation. The E103A, R104A and H118A enzymes exhibited no glutamine-dependent activity and were only partially active with NH(3). Although these observations were compatible with impaired activation by GTP, the apparent affinity of the D107A, L109A and G110A enzymes for GTP was reduced only 2-4-fold, suggesting that these residues do not play a significant role in GTP binding. In the presence of GTP, the k (cat) values for glutamine hydrolysis by the D107A and L109A enzymes were identical with that of wild-type CTP synthase. Overall, the kinetic properties of L109A CTP synthase were consistent with an uncoupling of glutamine hydrolysis from CTP formation that occurs because an NH(3) tunnel has its normal structure altered or fails to form. L109F CTP synthase was prepared to block totally the putative NH(3) tunnel; however, this enzyme's rate of glutamine-dependent CTP formation and glutaminase activity were both impaired. In addition, we observed that mutation of amino acids located between residues 102 and 118 in the synthase domain can affect the enzyme's glutaminase activity, suggesting that these residues interact with residues in the glutamine amide transfer domain because they are in close proximity or via a conformationally dependent signalling mechanism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。