Tardive dyskinesia is associated with altered putamen Akt/GSK-3β signaling in nonhuman primates

迟发性运动障碍与非人类灵长类动物壳核 Akt/GSK-3β 信号传导改变有关

阅读:10
作者:Giovanni Hernandez, Souha Mahmoudi, Michel Cyr, Jorge Diaz, Pierre J Blanchet, Daniel Lévesque

Background

Tardive dyskinesia is a delayed and potentially irreversible motor complication arising from chronic exposure to antipsychotic drugs. Interaction of antipsychotic drugs with G protein-coupled receptors triggers multiple intracellular events. Nevertheless, signaling pathways that might be associated with chronic unwanted effects of antipsychotic drugs remain elusive. In this study, we aimed to better understand kinase signaling associated with the expression of tardive dyskinesia in nonhuman primates.

Conclusions

Our results suggest that upregulation of putamen dopamine D3 receptor and alterations along the noncanonical GRK6/β-arrestin2/Akt/GSK-3β molecular cascade are associated with the development of tardive dyskinesia in nonhuman primates. © 2019 International Parkinson and Movement Disorder Society.

Methods

We exposed capuchin monkeys to prolonged haloperidol (n = 10) or clozapine (n = 6) treatments. Untreated animals were used as controls (n = 6). Half of haloperidol-treated animals (5) developed mild tardive dyskinesia similar to that found in humans. Using Western blots and immunochemistry, we measured putamen total and phosphorylated protein kinase levels associated with canonical and noncanonical signaling cascades of G protein-coupled receptors.

Results

Antipsychotic drugs enhanced pDARPP-32 and pERK1/2, but no difference ws observed in phosphoprotein kinase levels between dyskinetic and nondyskinetic monkeys. On the other hand, comparison of kinase levels between haloperidol-treated dyskinetic and nondyskinetic monkeys indicated that dyskinetic animals had lower GRK6 and β-arrestin2 levels. Levels of pAkt and pGSK-3β were also reduced, but only haloperidol-treated monkeys that developed tardive dyskinesia had reduced pGSK-3β levels, whereas pAkt levels in dyskinetic animals positively correlated with dyskinetic scores. Interestingly, double immunofluorescence labeling showed that putamen dopamine D3 receptor levels were upregulated and that D3/pAkt colocalization was enriched in haloperidol-treated animals displaying tardive dyskinesia. Conclusions: Our results suggest that upregulation of putamen dopamine D3 receptor and alterations along the noncanonical GRK6/β-arrestin2/Akt/GSK-3β molecular cascade are associated with the development of tardive dyskinesia in nonhuman primates. © 2019 International Parkinson and Movement Disorder Society.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。