A Simple, Centrifugation-Free, Sperm-Sorting Device Eliminates the Risks of Centrifugation in the Swim-Up Method While Maintaining Functional Competence and DNA Integrity of Selected Spermatozoa

一种简单的、无需离心的精子分选装置,可消除上游法中离心的风险,同时保持选定精子的功能能力和 DNA 完整性

阅读:16
作者:Huidrom Yaiphaba Meitei, Shubhashree Uppangala, Krishna Sharan, Srinidhi Gururajarao Chandraguthi, Arunkumar Radhakrishnan, Guruprasad Kalthur, Stefan Schlatt, Satish Kumar Adiga

Abstract

This pilot study was conducted to explore the benefits of using a centrifugation-free device based on the migration-sedimentation (MS) technique over centrifugation-based techniques in selecting competent spermatozoa, as compared with using split human semen samples. Ejaculates from 35 men undergoing semen analysis were split into four parts where one part was retained as the neat (NE) and the other three parts were subjected to sperm selection by using migration-sedimentation (MS), density gradient (DG) separation, and swim-up (SU) techniques. Sperm functional characteristics along with mitochondrial integrity, tyrosine phosphorylation, acrosome reaction, and ultrastructure were measured. The ability of selection techniques in reducing spontaneous and radiation-induced sperm DNA lesions was assessed by the TUNEL assay. In results, MS-selected spermatozoa had higher viability (P < 0.001), longevity in terms of total motility at the end of 6 and 18 h post-extraction (P < 0.001), and mitochondrial integrity (P < 0.001) compared with those selected by DG. Furthermore, spontaneous DNA lesions were significantly reduced in MS and SU fractions compared with NE (P < 0.001). Similarly, radiation-induced sperm DNA lesions were significantly lower in MS and SU fractions (P < 0.001) compared with DG. Ultrastructural analysis using scanning electron microscopy suggested a moderate, non-significant increase in the number of spermatozoa with normal head and mid-piece in MS fraction compared with other methods. In conclusion, the MS-based device offers a centrifugation-free, efficient, and reliable sperm selection method, making it suitable for partially equipped intra-uterine insemination (IUI) laboratories or office IUI programmes. Further research should focus on the safety and clinical usefulness of the device in assisted conception programmes in general and IUI in specific.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。