Common polymorphisms in C3, factor B, and factor H collaborate to determine systemic complement activity and disease risk

C3、因子 B 和因子 H 的常见多态性共同决定全身补体活性和疾病风险

阅读:5
作者:Meike Heurich, Ruben Martínez-Barricarte, Nigel J Francis, Dawn L Roberts, Santiago Rodríguez de Córdoba, B Paul Morgan, Claire L Harris

Abstract

Common polymorphisms in complement alternative pathway (AP) proteins C3 (C3(R102G)), factor B (fB(R32Q)), and factor H (fH(V62I)) are associated with age-related macular degeneration (AMD) and other pathologies. Our published work showed that fB(R32Q) influences C3 convertase formation, whereas fH(V62I) affects factor I cofactor activity. Here we show how C3(R102G) (C3S/F) influences AP activity. In hemolysis assays, C3(102G) activated AP more efficiently (EC(50) C3(102G): 157 nM; C3(102R): 191 nM; P < 0.0001). fB binding kinetics and convertase stability were identical, but native and recombinant fH bound more strongly to C3b(102R) (K(D) C3b(102R): 1.0 μM; C3b(102G): 1.4 μM; P < 0.0001). Accelerated decay was unaltered, but fH cofactor activity was reduced for C3b(102G), favoring AP amplification. Combining disease "risk" variants (C3(102G), fB(32R), and fH(62V)) in add-back assays yielded sixfold higher hemolytic activity compared with "protective" variants (C3(102R), fB(32Q), and fH(62I); P < 0.0001). These data introduce the concept of a functional complotype (combination of polymorphisms) defining complement activity in an individual, thereby influencing susceptibility to AP-driven disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。