Ascorbic Acid vs Calcitriol in Influencing Monocyte Chemoattractant Protein-1, Nitric Oxide, Superoxide Dismutase, as Markers of Endothelial Dysfunction: In Vivo Study in Atherosclerosis Rat Model

抗坏血酸与骨化三醇对单核细胞趋化蛋白-1、一氧化氮、超氧化物歧化酶作为内皮功能障碍标志物的影响:动脉粥样硬化大鼠模型体内研究

阅读:6
作者:Teuku Heriansyah, Herlina Dimiati, Tjut Farahiya Hadi, Dimas Arya Umara, Lian Varis Riandi, Fauzan Fajri, Sukmawan Fajar Santosa, Titin Andri Wihastuti, Kumboyono Kumboyono

Conclusion

Ascorbic acid and calcitriol treatment was able to reduce MCP-1 and increase NO and SOD in atherosclerosis rat. Calcitriol was significantly superior in increasing SOD levels compared to ascorbic acid.

Discussion

Both treatments could reduce MCP-1, and increase NO and SOD by increasing antioxidants. In this study calcitriol was superior to ascorbic acid in increasing SOD, but not NO and decreasing MCP-1. According to the theory, it was found that calcitriol through nuclear factor erythroid 2-related factor 2 (Nrf2) causes a direct increase in the amount of SOD. Nrf2 is an emerging regulator of cellular resistance to oxidants. Conclusion: Ascorbic acid and calcitriol treatment was able to reduce MCP-1 and increase NO and SOD in atherosclerosis rat. Calcitriol was significantly superior in increasing SOD levels compared to ascorbic acid.

Methods

The total of 24 male Rattus norvegicus strain Wistar rats were divided into 4 groups, namely: control/normal group (N), atherosclerosis group (DL) given atherogenic diet, atherosclerosis group given atherogenic diet and ascorbic acid (DLC), and atherosclerosis group given atherogenic diet and calcitriol (DLD) treatment for 30 days.

Results

Ascorbic acid and calcitriol treatment was significantly effective (P<0.05) in lowering expression of MCP-1 and increasing NO and SOD level. Calcitriol was superior to ascorbic acid in increasing SOD (P<0.05). There was no significant difference between ascorbic acid and calcitriol in decreasing MCP-1 and increasing NO (P>0.05).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。