Comparative Metabolomic and Transcriptomic Analyses Reveal Distinct Ascorbic Acid (AsA) Accumulation Patterns between PCA and PCNA Persimmon Developing Fruit

比较代谢组学和转录组学分析揭示了 PCA 和 PCNA 柿子发育果实之间不同的抗坏血酸 (AsA) 积累模式

阅读:5
作者:Yiru Wang, Songfeng Diao, Huawei Li, Lingshuai Ye, Yujing Suo, Yanhao Zheng, Peng Sun, Weijuan Han, Jianmin Fu

Abstract

Persimmon fruit has a high nutritional value and significantly varies between pollination-constant astringent (PCA) and pollination-constant non-astringent (PCNA) persimmons. The astringency type affects sugar, flavonoids, and tannin accumulation and is well known in persimmon fruit. However, the impact of the fruit astringency type on ascorbic acid (AsA) accumulation is limited. In this study, typical PCA varieties ('Huojing' and 'Zhongshi5') and PCNA varieties ('Yohou' and 'Jiro') of persimmon fruit were sampled at four developing stages (S1-S4) to provide valuable information on AsA content variation in PCA and PCNA persimmon. Persimmon fruit is rich in ascorbic acid; the AsA content of the four varieties 'Zhongshi5', 'Huojing', 'Jiro', and 'Youhou' mature fruit reached 104.49, 48.69, 69.69, and 47.48 mg/100 g. Fruit of the same astringency type persimmon showed a similar AsA accumulation pattern. AsA content was significantly higher in PCA than PCNA fruit at S1-S3. The initial KEGG analysis of metabolites showed that galactose metabolism is the major biosynthetic pathway of AsA in persimmon fruit. There were significant differences in galactose pathway-related metabolite content in developing PCA and PCNA fruit, such as Lactose, D-Tagatose, and D-Sorbitol content in PCA being higher than that of PCNA. Combined gene expression and WGCNA analyses showed that the expression of the GME (evm.TU.contig4144.37) gene was higher in PCA-type than in PCNA-type fruit in S1-S3 and exhibited the highest correlation with AsA content (r = 690 **, p < 0.01). Four hub genes, including the DNA methylation gene, methyltransferase gene, F-box, and Actin-like Protein, were identified as potential regulators of the GME gene. These results provide basic information on how astringency types affect AsA accumulation and will provide valuable information for further investigation on AsA content variation in persimmon fruit.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。