Subglottic stenosis examined as a fibrotic response to airway injury characterized by altered mucosal fibroblast activity

声门下狭窄被检查为对气道损伤的纤维化反应,其特征是粘膜成纤维细胞活性改变

阅读:6
作者:Tripti Singh, Vlad C Sandulache, Todd D Otteson, Mark Barsic, Edwin C Klein, Joseph E Dohar, Patricia A Hebda

Conclusions

Subglottic stenosis represents a fibrotic airway repair process that involves fibroblasts that produce recurrent, excessive scar formation. We suggest that SGS development and recurrence may be partially dictated by altered fibroblast responsiveness to antifibroplastic signals during mucosal repair.

Objective

To investigate the association between mucosal fibroblast activity and subglottic stenosis (SGS) development. Design: Prospective study of an animal model of SGS. Setting: Academic research laboratory. Subjects: New Zealand white rabbits were assigned to either the cricothyroidotomy and carbon dioxide laser injury group or the cricothyroidotomy and silver nitrate injury group. Airways were excised for histologic analysis and the establishment of primary fibroblast cultures. Lesions from surgical excision of established SGS and subglottic tissue were used to analyze SGS recurrence. Interventions: The subglottis was approached via cricothyroidotomy and was subjected to either carbon dioxide laser or silver nitrate injury before closure. The SGS lesions were excised at 8 to 10 weeks and were used to establish explants for fibroblast culture. The animals underwent recovery for an additional 14 days to follow recurrence of SGS. After 14 days, all the animals were killed humanely, and subglottic tissue was harvested for histologic evaluation. Rates of migration and contraction of SGS and normal airway fibroblasts were assayed using established in vitro

Results

Mucosal injury resulted in acute fibroplasia and chronic SGS, surgical excision of mature SGS at 8 weeks resulted in rapid recurrence of stenosis, and SGS-derived fibroblasts were relatively refractory to the effects of prostaglandin E(2) on migration and contraction. Conclusions: Subglottic stenosis represents a fibrotic airway repair process that involves fibroblasts that produce recurrent, excessive scar formation. We suggest that SGS development and recurrence may be partially dictated by altered fibroblast responsiveness to antifibroplastic signals during mucosal repair.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。