Sex Differences in the Hypothalamic Oxytocin Pathway to Locus Coeruleus and Augmented Attention with Chemogenetic Activation of Hypothalamic Oxytocin Neurons

下丘脑催产素至蓝斑通路的性别差异以及下丘脑催产素神经元化学遗传激活引起的注意力增强

阅读:10
作者:Xin Wang, Joan B Escobar, David Mendelowitz

Abstract

The tightly localized noradrenergic neurons (NA) in the locus coeruleus (LC) are well recognized as essential for focused arousal and novelty-oriented responses, while many children with autism spectrum disorder (ASD) exhibit diminished attention, engagement and orienting to exogenous stimuli. This has led to the hypothesis that atypical LC activity may be involved in ASD. Oxytocin (OXT) neurons and receptors are known to play an important role in social behavior, pair bonding and cognitive processes and are under investigation as a potential treatment for ASD. However, little is known about the neurotransmission from hypothalamic paraventricular (PVN) OXT neurons to LC NA neurons. In this study, we test, in male and female rats, whether PVN OXT neurons excite LC neurons, whether oxytocin is released and involved in this neurotransmission, and whether activation of PVN OXT neurons alters novel object recognition. Using "oxytocin sniffer cells" (CHO cells that express the human oxytocin receptor and a Ca indicator) we show that there is release of OXT from hypothalamic PVN OXT fibers in the LC. Optogenetic excitation of PVN OXT fibers excites LC NA neurons by co-release of OXT and glutamate, and this neurotransmission is greater in males than females. In male, but not in female animals, chemogenetic activation of PVN OXT neurons increases attention to novel objects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。