Dulaglutide Modulates the Development of Tissue-Infiltrating Th1/Th17 Cells and the Pathogenicity of Encephalitogenic Th1 Cells in the Central Nervous System

度拉糖肽调节组织浸润性 Th1/Th17 细胞的发育以及中枢神经系统中致脑炎性 Th1 细胞的致病性

阅读:1
作者:Hsin-Ying Clair Chiou ,Ming-Wei Lin ,Pi-Jung Hsiao ,Chun-Lin Chen ,Shiang Chiao ,Ting-Yi Lin ,Yi-Chen Chen ,Deng-Chyang Wu ,Ming-Hong Lin

Abstract

GLP-1 (glucagon-like peptide-1) has been reported to play a vital role in neuroprotection. Experimental autoimmune encephalomyelitis (EAE) is a well-established animal model widely used to study human multiple sclerosis, a chronic demyelination disease in the central nervous system (CNS). Recently, important studies have designated that the signaling axis of GLP-1 and its receptor controls the clinical manifestations and pathogenesis of EAE. However, it is elusive whether GLP-1 receptor signaling regulates the phenotype of autoreactive T cells in the CNS. We administered dulaglutide, a well-established GLP-1 receptor agonist (GLP-1 RA), to treat EAE mice prophylactically or semi-therapeutically and subsequently analyzed the mononuclear cells of the CNS. In this study, dulaglutide treatment significantly alleviates the clinical manifestations and histopathological outcomes of EAE. Dulaglutide decreases incidences of encephalitogenic Th1/Th17 cells and Th1 granulocyte-macrophage-colony-stimulating factor (GM-CSF) expression in the CNS. Administration of dulaglutide failed to control the chemotactic abilities of encephalitogenic Th1 and Th17 cells; however, prophylactic treatment considerably decreased the populations of dendritic cells and macrophages in the CNS parenchyma. These results obtained indicate that dulaglutide modulates the differentiation of encephalitogenic Th1/Th17 and the pathogenicity of Th1 cells by influencing antigen presenting cells quantities, providing mechanism insight on T cells regulation in ameliorating EAE by GLP-1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。