Modulation of astrocyte activity and improvement of oxidative stress through blockage of NO/NMDAR pathway improve posttraumatic stress disorder (PTSD)-like behavior induced by social isolation stress

通过阻断 NO/NMDAR 通路调节星形胶质细胞活性和改善氧化应激,改善社会隔离压力引起的创伤后应激障碍 (PTSD) 样行为

阅读:12
作者:Hua Li, Arash Mohammadi Tofigh, Azita Amirfakhraei, Xuan Chen, Michael Tajik, Dongwei Xu, Saeid Motevalli

Background

It has been well documented that social isolation stress (SIS) can induce posttraumatic stress disorder (PTSD)-like behavior in rodents, however, the underlying mechanism is remained misunderstood. In the current study, we aimed to elucidate the role of NO/NMDAR pathway in PTSD-like behavior through modulating of astrocyte activity and improvement of oxidative stress.

Conclusion

Based on these results, it could be hypothesized that blockage of NO/NMDAR pathway might be a novel treatment for PTSD-like behavior in animals by inhibiting the astrocyte and regulating oxidative stress level.

Methods

Male NMRI mice were used to evaluate the memory function by using Morris water maze (MWM) and fear memory extinction by using freezing response. We used MK-801 (NMDAR-antagonist), L-NNA (NOS-inhibitor), NMDA (NMDAR-agonist), and L-arginine (NO-agent) to find a proper treatment. Also, immunohistochemistry, RT-PCR, and oxidative stress assays were used to evaluate the levels of astrocytes and oxidative stress. We used five mice in each experimental task.

Results

Our results revealed that SIS could induce learning and memory dysfunction as well as impairment of fear memory extinction in MWM and freezing response tests, respectively. Also, we observed that combined treatment including blockage of NOS (by L-NNA, 0.5 mg/kg) and NMDAR (by MK-801, 0.001 mg/kg) at subeffective doses could result in improvement of both memory and fear memory. In addition, we observed that SIS significantly increases the GFAP expression and astrocyte activity, which results in significant imbalance in oxidative stress. Coadministration of MK-801 and L-NNA at subeffective doses not only decreases the expression of GFAP, but also regulates the oxidative stress imbalance

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。