Controlled dual release of dihydrotestosterone and flutamide from polycaprolactone electrospun scaffolds accelerate burn wound healing

聚己内酯电纺支架中双氢睾酮和氟他胺的控制双重释放可加速烧伤伤口愈合

阅读:6
作者:Huaikai Shi, Kevin H-Y Tsai, Duncan Ma, Xiaosuo Wang, Reena Desai, Roxanne J Parungao, Nicholas J Hunt, Yuen Yee Cheng, Hao Zhang, Ye Xu, Ulla Simanainen, Qian Tan, Mark S Cooper, David J Handelsman, Peter K Maitz, Yiwei Wang1

Abstract

Wound healing is a complex process involving multiple independent and overlapping sequential physiological mechanisms. In addition to cutaneous injury, a severe burn stimulates physiological derangements that induce a systemic hypermetabolic response resulting in impaired wound healing. Topical application of the anti-androgen drug, flutamide accelerates cutaneous wound healing, whereas paradoxically systemic dihydrotestosterone (DHT) improves burn wound healing. We developed and characterized a PCL scaffold that is capable of controlled release of androgen (DHT) and anti-androgen (F) individually or together. This study aims to investigate whether local modification of androgen actions has an impact on burn injury wound healing. In a full-thickness burn wound healing, mouse model, DHT/F-scaffold showed a significantly faster wound healing compared with F-scaffold or DHT-scaffold. Histology analysis confirmed that DHT/F-scaffold exhibited higher re-epithelization, cell proliferation, angiogenesis, and collagen deposition. Dual release of DHT and F from PCL scaffolds promoted cell proliferation of human keratinocytes and alters the keratinocyte cell cycle. Lastly, no adverse effects on androgen-dependent organs, spleen and liver were observed. In conclusion, we demonstrated DHT plus F load PCL scaffolds accelerated burn wound healing when loading alone did not. These findings point to a complex role of androgens in burn wound healing and open novel therapeutic avenues for treating severe burn patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。