Riboflavin activated by ultraviolet A1 irradiation induces oxidative DNA damage-mediated mutations inhibited by vitamin C

紫外线A1照射激活的核黄素诱导氧化性DNA损伤介导的突变,而维生素C可抑制这种突变

阅读:9
作者:Ahmad Besaratinia, Sang-In Kim, Steven E Bates, Gerd P Pfeifer

Abstract

An increasingly popular theory ascribes UVA (>320-400 nm) carcinogenicity to the ability of this wavelength to trigger intracellular photosensitization reactions, thereby giving rise to promutagenic oxidative DNA damage. We have tested this theory both at the genomic and nucleotide resolution level in mouse embryonic fibroblasts carrying the lambda phage cII transgene. We have also tested the hypothesis that inclusion of a cellular photosensitizer (riboflavin) can intensify UVA-induced DNA damage and mutagenesis, whereas addition of an antioxidant (vitamin C) can counteract the induced effects. Cleavage assays with formamidopyrimidine DNA glycosylase (Fpg) coupled to alkaline gel electrophoresis and ligation-mediated PCR (LM-PCR) showed that riboflavin treatment (1 microM) combined with UVA1 (340-400 nm) irradiation (7.68 J/cm(2)) or higher dose UVA1 irradiation alone induced Fpg-sensitive sites (indicative of oxidized and/or ring-opened purines) in the overall genome and in the cII transgene, respectively. Also, the combined treatment with riboflavin and UVA1 irradiation gave rise to single-strand DNA breaks in the genome and in the cII transgene determined by terminal transferase-dependent PCR (TD-PCR). A cotreatment with vitamin C (1 mM) efficiently inhibited the formation of the induced lesions. Mutagenicity analysis showed that riboflavin treatment combined with UVA1 irradiation or high-dose UVA1 irradiation alone significantly increased the relative frequency of cII mutants, both mutation spectra exhibiting significant increases in the relative frequency of G:C --> T:A transversions, the signature mutations of oxidative DNA damage. The induction of cII mutant frequency was effectively reduced consequent to a cotreatment with vitamin C. Our findings support the notion that UVA-induced photosensitization reactions are responsible for oxidative DNA damage leading to mutagenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。