Eukaryotic translation initiation factor 4GI and p97 promote cellular internal ribosome entry sequence-driven translation

真核翻译起始因子4GI和p97促进细胞内部核糖体进入序列驱动的翻译

阅读:6
作者:Patrick Hundsdoerfer, Christian Thoma, Matthias W Hentze

Abstract

Numerous cellular mRNAs encoding proteins critical during cell stress, apoptosis, and the cell cycle seem to be translated by means of internal ribosome entry sequences (IRES) when cap-dependent translation is compromised. The underlying molecular mechanisms are largely unknown. Using a HeLa-based cell-free translation system that mirrors the function of cellular IRESs in vitro, we recently demonstrated that translation from the c-myc IRES continues after proteolytic cleavage of eukaryotic translation initiation factor (eIF) 4G. To address the role of eIF4G in cellular IRES-driven translation directly, we immunodepleted eIF4GI from the HeLa cell translation extracts. After efficient depletion of eIF4GI (>90%), both cap-dependent and c-myc IRES-dependent translations are diminished to residual levels (<5%). In striking contrast to cap-dependent translation, c-myc IRES-dependent translation is fully restored by addition of the conserved middle fragment of eIF4GI, harboring the eIF3- and eIF4A-binding sites. p97, an eIF4G-related protein that has been described both as an inhibitor of translation and as a modulator of apoptosis, not only suffices to also rescue c-myc IRES-driven (but not cap-dependent) translation, but it even superinduces IRES-mediated translation 3-fold compared with nondepleted extracts. Interestingly, both p97 and the middle fragment of eIF4GI also rescue translation driven by proapoptotic (p97) and antiapoptotic [X-linked inhibitor of apoptosis (XIAP) and cellular inhibitor of apoptosis 1 (c-IAP1)] IRESs, reflecting a broader role of these polypeptides in cellular IRES-mediated translation and indicating their importance in apoptosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。