Negative regulation of IFN-alpha/beta signaling by IFN regulatory factor 2 for homeostatic development of dendritic cells

干扰素调节因子 2 对干扰素-α/β 信号的负向调节,促进树突状细胞的稳态发育

阅读:4
作者:Kenya Honda, Tatsuaki Mizutani, Tadatsugu Taniguchi

Abstract

The development and cooperation of distinct subsets of antigen-presenting cells, particularly dendritic cells (DCs), may be critical for maintaining homeostatic immune responses. Recently, much attention has been focused on IFN-alpha/beta, the cytokines induced en masse by virus infection or the activation of Toll-like receptors, in the context of DC activation. Here, we show that mice deficient in IFN regulatory factor 2 exhibit selective loss of CD8alpha- DCs, the so-called myeloid DCs, which is accompanied by a notable increase in CD11c-CD11bhigh other myeloid lineage cells. Such deficiency is intrinsic to the bone marrow precursors, in which the abnormal induction of IFN-alpha/beta genes causes excessive IFN signaling. The critical function of IFN regulatory factor 2 in the negative regulation of IFN-alpha/beta signaling is underscored by the observation that the deficiency is rescued by introducing an additional null mutation for the IFN receptor complex. In view of accumulating evidence of the critical role of IFN-alpha/beta signaling in DC activation, our present study offers a unique example in that the magnitude of a cytokine signal should be properly balanced in a stage-specific manner during the differentiation and activation of DCs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。