Modified H2 V3 O8 to Enhance the Electrochemical Performance for Li-ion Insertion: The Influence of Prelithiation and Mo-Substitution

改性 H2 V3 O8 增强锂离子嵌入电化学性能:预锂化和 Mo 取代的影响

阅读:7
作者:Daniela Söllinger, Michael Karl, Günther J Redhammer, Jürgen Schoiber, Valérie Werner, Gregor A Zickler, Simone Pokrant

Abstract

Nanostructured H2 V3 O8 is a promising high-capacity cathode material, suitable not only for Li+ but also for Na+, Mg2+ , and Zn2+ insertion. However, the full theoretical capacity for Li+ insertion has not been demonstrated experimentally so far. In addition, improvement of cycling stability is desirable. Modifications like substitution or prelithiation are possibilities to enhance the electrochemical performance of electrode materials. Here, for the first time, the substitution of vanadium sites in H2 V3 O8 with molybdenum was achieved while preserving the nanostructure by combining a soft chemical synthesis approach with a hydrothermal process. The obtained Mo-substituted vanadate nanofibers were further modified by prelithiation. While pristine H2 V3 O8 showed an initial capacity of 223 mAh g-1 and a retention of 79 % over 30 cycles, combining Mo substitution and prelithiation led to a superior initial capacity of 312 mAh g-1 and a capacity retention of 94 % after 30 cycles.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。